MATH 2050 - The Completeness Property of \mathbb{R}
(Reference: Bartle §2.3)
Def n ${ }^{n}$ / Thu (Completeness Property of \mathbb{R})
Every $\phi \neq S \subseteq \mathbb{R}$ that has an "upper bound" must have a "supremum" in \mathbb{R}.

We first make sense of the ?'s.
Def n : Let $\phi \neq S \subseteq \mathbb{R}$.
(a) S is bounded above if $\exists u \in \mathbb{R}$ s.t. $s \leq u \quad \forall s \in S$ Any such $u \in \mathbb{R}$ is called an upper bound of S.
(b) S is bounded below if $\exists w \in \mathbb{R}$ s.t. $s \geqslant w \forall s \in S$ Any such $w \in \mathbb{R}$ is called a lower bound of S.
(c) S is bounded if it is both bod above AND below.

Otherwise. S is unbounded.
Example: $S:=\{x \in \mathbb{R} \mid x<2\}$
Note: There are many upper bods, eg. 2, 3, 5, 100, $\sqrt{100}$ etc...
$\Rightarrow S$ is bod above.
BuT S is NoT bad below. (Ex: prove it)
\# lower bd

Def n: Let $\phi \neq S \subseteq \mathbb{R}$.
(a) Suppose S is bod above

Then. $u \in \mathbb{R}$ is called a supremum (or least upper bound) of S if the following holds:
(i) u is an upper bd of S
\int Notation:
(ii) $u \leqslant V$ for any upper bd v of S
(b) Similarly, we can define infimum (or greatest lower bound)
[Notation: inf S or glib. S] Ex: Write this down.

Lemma: $\sup S$, if exists, is unique.
Proof: Suppose there are two $u, w \in \mathbb{R}$ which are supremum of S Therefore, u, w satisfy (i). (ii) in the deft above.
By (i) for w and (ii) for u, we have

$$
u \leqslant w r \because w \text { is an upper bd }
$$

Similarly, by (i) for u and (ii) for w, we have $w \leq u^{\ell} \because u$ is an upper hd.

Thus, $u=w$.

We now establish a useful way to prove that $u \in \mathbb{R}$ is the supremum of a subset $S \subseteq \mathbb{R}$.

Prop: Let $\phi \neq S \subseteq \mathbb{R}$. Then $u=\sup S$ iff
(i) u is an upper bound of S, ie.

$$
s \leq u \quad \forall s \in S
$$

(ii) u is the smallest upper bound of S. ie.

$$
\forall \varepsilon>0 . \exists s^{\prime} \in S \text { s.t. } u-\varepsilon<s^{\prime}
$$

Picture:

Proof: " \Rightarrow " Suppose $u=\sup S$.
By (i), u is an upper bd of S
$\Rightarrow u \geqslant s \quad \forall s \in S \quad$ which is (i).
By (ii), $u \leqslant v$ for any upper bd. v of S.
Fix $\varepsilon>0$, but arbitrary.
Since $u-\varepsilon<u,(*) \Rightarrow u-\varepsilon$ cannot be an upper bd.
So, $\exists s^{\prime} \in S$ st. $u-\varepsilon<S^{\prime}$
"<<" Exercise.

Similarly, for infimum, we have:
Prop: $u=\inf S$ ifs
(1) $s \geqslant u, \forall s \in S$ (ie. u is a lower bd)
(2) $\forall \varepsilon>0, \exists s^{\prime} \in S$ s.t. $u+\varepsilon>S^{\prime}\left(\begin{array}{l}\text { ir. } u \text { is the } \\ \text { greatest }\end{array}\right.$ lomerbd. $)$

Pf: Exercise.

Examples :

1) $S=\left\{S_{1}, \ldots, s_{n}\right\}$ finite set" (Assume: $s_{1}<S_{2}<\ldots<S_{n}$)

$$
\begin{aligned}
& \sup S=S_{n} \\
& \inf S=S_{1} \\
& \text { (Ex: Prove this) }
\end{aligned}
$$

2) $\quad S=[0,1]$

$$
\begin{aligned}
& \sup S=1 \in S \\
& \inf S=0 \in S
\end{aligned}
$$

3) $\quad S=(0,1)$

$\sup S=1 \& S$
inf $S=0 \& S$

Recall that:
Completeness Property: Every $\phi \neq S \subseteq \mathbb{R}$ which is bounded above must have a supremum in \mathbb{R}. [Note: \mathbb{Q} fails this!]
Q : What about the existence of infimum?
A: It follows from the completeness property.
Prop: Every $\phi \neq S \subseteq \mathbb{R}$ that is bounded below must have an infimum in \mathbb{R}.

Proof: Given $\phi \neq S \subseteq \mathbb{R}$. consider the subset:
\exists some lower bd. U of S

$$
\begin{aligned}
& \Leftrightarrow \quad u \leqslant s \quad \forall s \in S \\
& \Rightarrow \quad-u \geqslant-s \quad \forall s \in S
\end{aligned}
$$

$\Rightarrow-U$ is an upper bod for \bar{S} ie. \bar{S} is bod above.
By Completeness Property, sup \bar{S} exists in \mathbb{R}.

Claim: $\inf S$ exists. $\inf S=-\sup \bar{S}$.
Pf of Claim:
Check: $-\sup \bar{S}$ is a lower bd for S
This is the same by reversing the arguments of tho claim abbe.
Check: $-\sup \bar{S}$ is the greatest lower bd for S
Let $\varepsilon>0$ be fixed but arbitrary.
(Want to show: $\exists s^{\prime} \in S$ st. $-\sup \bar{S}+\varepsilon>s^{\prime}$)
By (2) of supremum for \bar{S},

$$
\sup \bar{S}-\varepsilon<\bar{S}^{\prime} \quad \text { for some } \bar{S}^{\prime} \in \bar{S}
$$

By def", we write $\bar{s}^{\prime}=-S^{\prime}$ for some $S^{\prime} \in S$
So. $\sup \bar{S}-\varepsilon<-S^{\prime} \Rightarrow-\sup \bar{S}+\varepsilon>S^{\prime}$ for some $S^{\prime} \in S$
which is (*)

Archimedean Property: \mathbb{N} is NOT bod above.
Pf: Suppose NOT. ie. IN is bod above.
By Completeness Property, $\sup \mid \mathbb{N}=: u \in \mathbb{R}$ exists.
So, $u-1<n^{\prime}$ for some $n^{\prime} \in \mathbb{N}$.

$$
\Rightarrow \quad u<n^{\prime}+1 \in \mathbb{N}
$$

$\Rightarrow u$ is NOT an upper bd for \mathbb{N}° Contradiction!

Corollaries:
(i) $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$

(ii) $\forall \varepsilon>0, \exists n \in \mathbb{N}$ s.t. $0<\frac{1}{n}<\varepsilon$
(iii) $\forall y>0 . \exists!n \in \mathbb{N}$ st. $n-1<y \leq n$ unique
Ex: Prove these!

